Neuroscientist Long - Jun Wu 1 in MicrogliaVVoltage - Gated Proton Channel

نویسنده

  • Long-Jun Wu
چکیده

Microglia are brain resident immune cells and their functions are implicated in both the normal and diseased brain. Microglia express a plethora of ion channels, including K channels, Na channels, TRP channels, Cl channels, and proton channels. These ion channels play critical roles in microglial proliferation, migration, and production/release of cytokines, chemokines, and neurotoxic or neurotrophic substances. Among microglial ion channels, the voltage-gated proton channel H V 1 is a recently cloned ion channel that rapidly removes protons from depolarized cytoplasm and is highly expressed in the immune system. However, the function of microglial H V 1 in the brain is poorly understood. Recent studies showed that H V 1 is selectively expressed in microglia but not neurons in the brain. At the cellular level, microglial H V 1 regulates intracellular pH and aids in NADPH oxidase-dependent generation of reactive oxygen species. In a mouse model of middle cerebral artery occlusion, microglial H V 1 contributes to neuronal cell death and ischemic brain damage. This review discusses the discovery, properties, regulation, and pathophysiology of microglial H V 1 proton channel in the brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling

Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents ...

متن کامل

Microglial Hv1 proton channel promotes cuprizone-induced demyelination through oxidative damage.

NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) production in inflammatory cells including microglia plays an important role in demyelination and free radical-mediated tissue injury in multiple sclerosis (MS). However, the mechanism underlying microglial ROS production and demyelination remains largely unknown. The voltage-gated proton channel, Hv1, is selectively expressed in micro...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

Voltage-gated proton channel in a dinoflagellate.

Fogel and Hastings first hypothesized the existence of voltage-gated proton channels in 1972 in bioluminescent dinoflagellates, where they were thought to trigger the flash by activating luciferase. Proton channel genes were subsequently identified in human, mouse, and Ciona intestinalis, but their existence in dinoflagellates remained unconfirmed. We identified a candidate proton channel gene ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014